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Supersonic inviscid flow over nonaxisymmetric bodies is considered. A new version of the 
method of reference planes is used. In this version, a near characteristics-streamlines coor- 
dinate system and a highly efficient numerical integration scheme is developed. The CFL con- 
dition is rigorously satisfied on the flow. Several sample calculations are presented. r) 1987 

Academic Press, Inc. 

1. INTRODUCTION 

The method of characteristics for three-dimensional flows has been developed in 
a number of ways. Surveys of this method have been given [ 1,2, 31, and the 
leading approaches have been compared [4]. The main advantages of such 
methods lie in their intrinsic use of characteristics as well as their accurate 
calculation of shockwaves. Generally these methods, which require consideration of 
characteristic conoids and bicharacteristics, are regarded as complex and com- 
putationally inefficient compared to the more popular finite difference shock captur- 
ing and shock fitting methods, e.g., [S, 6, 71. 

Another class of schemes allied to the characteristics method but much simpler to 
apply is generically referred to as reference plane methods [S-12, 11. Another 
designation is method of near characteristics, a terminology which reflects the idea 
that characteristics are employed in an approximate fashion. In this paper we apply 
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a variant of this approach to the problem of flow past nonaxisymmetric bodies. Our 
approach is most closely related to that of Sauer [9] and Rakich [ 121. 

For the case treated here, flow past a body is divided into a set of azimuthal 
planes. In each plane a highly successful two-dimensional characteristics method 
[13, 141 is applied. The “cross-talk” between such planes created by azimuthal 
derivatives and velocities then serve as forcing terms in the equations. Unlike earlier 
treatments that we are familiar with we are able to rigorously consider domains of 
dependence follow the Courant-Friedrichs-Lewy (CFL) condition. The result is a 
method which is extremely fast without loss of efficiency or accuracy. 

2. FORMULATION 

Since the form of the governing equations is not standard, we now outline their 
development. Flow in cylindrical coordinates (x, Y, 4) is governed by the following 
equations: 

V*(pu)=O, 

au au -wau lap “-+u-=------, 
ar ax r ad pax 
au au +av w2 1 ap v-+u-=--+-----, 
ar ax r ad r P ar 

aw aw -w aw zlw i ap v-+~-~-------, 
ar ax r ad r pr a4 

In addition to the continuity (1) and momentum equations (2), (3), (4), we have 
Bernoulli’s relation 

u2+v2+w2 a2 M2 1 -=A+- 
2 +y-1 2 y-l’ (5) 

The gas is specified by the state equation 

p,-(Y- 
P’ 

‘Is = constant, (6) 

where the entropy S satisfies 

u.vs=o, (7) 

between shocks while (5) is also valid across shocks [ 151. We normalize u, v, w, 
and the speed of sound a by the upstream speed of sound a,; x, r by the body 
length; p by its upstream value po; p by ypo; and S is replaced by (S - S,)/R, where 
R is the universal gas constant. 
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We introduce 

0(x, r, 4) = tan-’ 
0 
u 
2.4 ’ 

the flow deflection angle in the projected plane, 4 = constant. Similarly 

p(x,r,$)=sin’ $ 
( 1 * 

is the projected flow Mach angle, where 

MZ, 2y 

In Appendix A it is shown 

(8) 

(9) 

(10) 

+Gi f(tanOtanp+GGZ)d+r 
tan8ftanp -;-> 

r (11) 

where 

C’:d, =L+tan(Ojp)g 

denotes differentiation in the C’-directions, i.e., in the near characteristic direc- 
tions. 13 f P(U) are the corresponding “Riemann invariants.” The various terms 
appearing in (11) are defined in Appendix A. In what follows we also use 

cr=lnp= Yin 
Y-l ( 

1 +qhf;)lj* +&$+$f$)-S-In 7, (13) 

where w = w/q. The second form for 0 in (13) follows from (5) and (6). It should be 
noted that for axisymmetric flow, we have o = 9, = a4 = 0, and (11) reduces to the 
appropriate axisymmetric equations. 

Next we define new coordinates (a, /I, i) such that 

rl = x, tan( 8 + P), rB = xP tan 0, [ = 4. (14) 

This mapping is further fixed by the condition at the body 

x(a = 0, P, 0 = P, (15) 
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and the condition that the shock have unit slope at each constant [ plane, i.e., 

aa 
ap=l 

at the shock. Under this transformation the C+ form of (11) becomes 

(16) 

(17) 

while the C- form 

DR- = 
G, + tan 9 tan p + G2 Dr 

T(y-s)+ tane-tanp y> (18) 

where differentiation in CP direction is now given by, 

D2- 2 tan8 r a A- 
aa tan 8 + tan p rs ap' 

As shown in Appendix B the 4 and [ derivatives are related by 

a (ri - tan 8 xi) x,(ap) + (tan(8 -t p) xc - re) x,(a/ap) a 
g= (tan 8 - tan(8 + /*)) x,xD +z’ (19) 

If we combine (17) and (18), then 

where 

The entropy equation as shown in Appendix A is now 

(20) 

s,=~s x 
rcostl 4 8’ (21) 
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while the 4 component of the momentum equation is 

sin2 ,u cos e 0 
-CT,+- 

yr xfl 
CO/J+-04 

r 

0 sin’ p cos e =-- 
Y XB 

o,-(1 +W2)Wsin8. 
r 

With the use of (13) r~ can be eliminated from (22) to give 

XB cOa=~tan~P,j-rcose(~sine+tan~Pb) 

- 3 w(0.1~ + co2 sin e). 

(22) 

(23) 

The dependent variables x, r, 8, p, w, and S are determined by ( 14) (17), ( 18) or 
(20), (21), and (23). On the body x, r, (3 are specified by the boundary conditions 

XC@ = 0,/t 0 = 8, 

r(a = 0, B, i) =.f(P, 0, 

(24) 

(25) 

e(a=o,fi,i)=tan-’ ag , 
( > 
fca 0 

In addition to the shock conditions, we also apply (16) at the shock. 

3. NUMERICAL PROCEDURES 

The following scheme is an extension of the one used in the axisymmetric case 
[13]. Each azimuthal section (ck =constant; k= 1,2,...) has the (LX, b) grid shown 
in Fig. 1. In the neighborhood of the tip, 0 6 p < 8, , the flow is taken as flow past a 
cone, not necessarily circular. For /I > BI a marching scheme described next is used. 

Regard the flow as determined for all columns up to B = fl, for all ik sections. We 
first indicate how the flow is determined at the body of the fl, column, denoted by 
a, in Fig. 1. When integrating in the C direction as it explicitly appears in ( 18), we 
trace this near characteristic back to the pm- 1 column, the point b, in Fig. 1. Flow 
variables at b, are found by a second order accurate interpolation scheme. [ 
derivatives are taken as the averages of the center differences at a, and at b, . All 
other equations are integrated by appropriate elementary grid points differences 
since they only involve cx and j3 derivatives. The values of the flow for the entire row 
ck, k = l,..., of body points are now iterated until a convergence criterion is met. 
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FIG. 1. (a. p) coordinates. 

Above the body, instead of the boundary conditions (14)-(26) we have (14), (17). 
Again values for an entire row are iterated together. We proceed in this manner 
until the point a, of Fig. 1 is reached. At this point the CP near characteristic 
strikes the shock before hitting the /?,-, column. All remaining rows in /?,, are now 
iterated simultaneously. 

To consider stability denote the true Mach angle by ji. It then follows that 

u2 sin2 p sin2jj=-T--i=- 
4 +w 1 +w2’ 

and hence 

At each constant [ plane, the true domain of dependence for the flow projected 
onto that plane lies inside the domain of dependence determined by the two near 
characteristics. As for the [ derivatives, let b in Fig. 2 be the point to be considered, 
and let 5, and t2 be the angles (in (x, r, 4) space) between rub and rbc and between 
r ah and rbd, We want c,a ii and t2 > ,L. This requirement is easily satisfied unless 
the aspect ratio (the ratio of the largest to the smallest radius at the cross section) is 
large, in which case a smaller step size of /? is required. 

FIG. 2. (fi, [) coordinates with corresponding angular value in (x, r, 4) space. 
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Some mention of the calculation over a noncircular cone is ordered. Near the tip 
(0 6 b 6 BIG) at each section [ = ck, we approximate the flow as being the flow over 
a circular cone with half angle 0, = tan-‘(f’(fi = fi,<, i = ik)). We then compute the 
rest of the flow (p>/?,,-) by integrating the (nonaxisymmtric) equations using the 
numerical scheme described above. Note that flow over a noncircular cone is con- 
stant along the shock and the body at each section [ = ik. Hence we compute the 
flow along the p direction until this constancy condition is met within a prescribed 
error tolerance. 

Since many of the steps in our procedure are iterative, a good first approximation 
can significantly accelerate convergence. To motivate our choice of a first 
approximation observe that (17) (18), and (21) differ from axisymmetric flow in 
the “second order” terms, 

where as (19) indicates, a/@ = o(a/at). Thus if a body can be regarded as locally 
axisymmetric taking the flow as axisymmetric should be an excellent 
approximation. In any case locally axisymmetric flow is the first approximation 
adopted by us. 

4. RESULTS AND DISCUSSIONS 

For purposes of exposition we have performed calculations of flow over bodies 
with elliptical cross sections and azimuthal parabolic profiles. Relative few points, 
planes, and iterations are needed to compute the entire flow field. 4 = 0, rr and 
4 = 7r/2, 3rc/2 are planes of symmetry which are not assumed in the calculations, 
and are used as a check on the correctness of the results. Throughout the entire 
flow field, all grid points with such symmetry are found to have values in agreement 
within the same order of magnitude as the prescribed error tolerance. 

Figure 3 shows the body and shock along the half planes 4 = 0 and I$ = 7~ for flow 
at M, = 2 over a body with 30% thickness at I$ = 0 and 20% thickness at 4 = n/2. 
To carry out this calculation we took 32 azimuthal sections each having 164 grid 
points, 20 on the body. The result of reducing the number of azimuthal planes to 16 
is shown by x’s and + ‘s. For calculations with the tine mesh size, the lines for 4 = 0 
and 4 = x are indistinguishable in this figure. For calculations with the coarse mesh 
size, + signifies a point at CJ~ = 0 and x signifies a point at 4 = n. Each pair of + 
and x appearing together in the figure have the same values of c1 and fl, and hence 
they have the same flow values. Figure 4 shows the body and the shock for the 
same flow along C$ = n/4 and 4 = 37114. Again, for calculations with the fine mesh 
size, the lines for the two half planes are indistinguishable. For calculations with the 
coarse mesh size, + signifies a point at I$ = rrr/4, and x signifies a point at 4 = 3x14, 
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FIG. 3. Body and shock at 4 = 0( + ) and at Q = n( x ) 
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FIG. 4. Body and shock at 4 = n/4( + ) and at 0 = 3n/4( x ). 
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FIG. 5. Pressure distribution on the body. + is at Q = 0 or n/4; x is at 4 = 3x/4 or n. 
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FIG. 6. Cross flow, normalized to (u’+ I?‘)“‘, on the body. 
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FIG. 7. Cross flow, normalized to (u’+ u*)‘;~, at the shock. 

125 

FIG. 8. Body and shock for flow at 2” angle of attack. 
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Pressure distribution on the body for flow at 2 angle of attack 

with each pair of + and x having the same LX and j?. In these two figures, 
agreement is excellent with respect to both symmetry and the different grid sizes. 

For the same flow, the pressure distribution on the body at 4 = 0, 7r/4, n, 37c/4 is 
shown in Fig. 5. For 4 = 0, 7-r the agreement is excellent. For C#J = 7r/4, 37r/4 the 
agreement is good with respect to symmetry, but there is a small discrepancy 
between the coarse and the fine grid calculations. Since the grid size in the [ direc- 
tion is quite large, about rr/s, the discrepancy is certainly tolerable. 

The cross flow on the body is given in Fig. 6. As the figure shows, the cross flow 
vanishes in the symmetry plane. At CJ = 7r/4, 37-r/4, there is some discrepancy between 
the coarse and fine grid calculations due to the largeness of the [ grid size. Figure 7 
shows that cross flow at the shock. The results are again quite good. Figures 8 and 
9 show the same body at two degree angle of attack traveling at M, = 2. 

As an indication of the computational speed, we mention that for the whose ffow 
field, the time of a typical calculation is roughly 10 set on an IBM 3081. 

APPENDIX A. EQUATIONS IN NONAXISYMMETRIC FLOW 

We wish to express the governing equations (l)-(7) in near characteristics form. 
Since p = p( p, S), using (6) and (7) ( 1) becomes 
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Denote 

q = (4 0) and 

Then (2) and (3) become 

q-v,q+;v,p=L (42) 

where 

f=Y$,, 0,“‘. 
( ) r 

In a constant half-plane with 0 and p defined by (8) and (9), let t(6) be the 
tangent, and n(0) be the normal on the projected streamline. Denote s and n as the 
arc length and normal coordinate. Then (Al ) becomes 

and (A2) becomes 

q!Y.?+I!!!=2!!?!+wZsin~, 
as p as r ad r 

,a% lap -wqae w2 
--+-cos 8. 

’ Z+pTG= r ad r 

Denote (T = In p and o = w/q. Rearranging (A3), (A4), and (A5), 

( E+ 1 a0 +(~:-1)1/2 a0 1 aa -- 
) as-(kf-ip2 an - yfdZ, ( -+ as - (MZ, - i p2 G ) 

where F, = (o’/r) cos 0 - (o/r) 0,, 

(A6) can then be written as 

(A3) 

(A4) 

(A5) 

(A7) 

where d, is given in (12). 
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Rewriting (5) we have 

a’= 1 +q(M:-W2))/(l +:‘-‘+) 
i 2 sin p 

= 1 ++q(l +JqL$). 
( 

(A8) 

Combining (6), (A8), and p = yp/a’, we then obtain (13). Rearranging (Ml, we get 

l+qMi)/(sin2,+G(l +w’)). 

Now define 

W=ln 1 +q(Mi-w’)). 
( 

(A91 

Since the derivative of the Prandtl function is 

P’(p) = c0S2 p 
y - 1 
-j- + sin* p , 

! 

using (13), (A7) becomes (11) with 

.,=c+-&). (AlO) 

04 + (4Y) a$+ 
cos 9 (All) 

Next, we wish to express the entropy equation (7) in a form useful to us. (7) can 
be written as 

(q.V2)S+$$=0. 

In the natural coordinates s and n, this becomes 

as -was 
4a,=yj-g (‘412) 

If we define (CC, p, i) by (14) and use the fact that s is the arc length, we get 

a 1 a 1 a coso a 

Z=(.~~+~~)‘~~~=.x~(l +tan20)‘/2@=--’ -9 8 
(A131 

(A12) then becomes (21). 
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Now we give a similar treatment for the 4 momentum equation (4). This can be 
written as 

(p.~*)ul+~-L$=+!$~Y. 
r 

In natural coordinates, this becomes 

agO a* a0 -40 aqw 
qx-+~~= 

2 w sin f$ --- ~ 
r ad ’ r 

Using (A4) and (A13), this then becomes (22). 

APPENDIX B. COORDINATE TRANSFORMATION 

For x = X(LY, /?, [), r = r(a, /I, [), 4 = d(a, /I, 0, using the chain rule we obtain 

Since Q = [, and 4, = #,j = 0, di = 1, 

where 

1 0 -xi 

0 1 

-rc , 

00 1 1 

Then 

= ( -rflx5 + xgri)(a/a4 + (r,xi - x,rc)Wap) + 2 
D x 

=(rc--an Qx,) xB (a/w+ (tan(8+p)xi- ri)x, (alap)+ 
D au 
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